Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 484: 116883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437959

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) reduces the overall quality of life and leads to interruption of chemotherapy. Ursolic acid, a triterpenoid naturally which presents in fruit peels and in many herbs and spices, can function as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, and has been widely used as an herbal medicine with a wide spectrum of pharmacological activities, including anti-cancer, anti-inflammatory and neuroprotective effect. METHODS: We used a phenotypic drug screening approach to identify ursolic acid as a potential neuroprotective drug in vitro and in vivo and carried out additional biochemical experiments to identify its mechanism of action. RESULTS: Our study demonstrated that ursolic acid reduced neurotoxicity and cell apoptosis induced by pacilitaxel, resulting in an improvement of CIPN. Moreover, we explored the potential mechanisms of ursolic acid on CIPN. As a result, ursolic acid inhibited CHOP (C/EBP Homologous Protein) expression, indicating the endoplasmic reticulum (ER) stress suppression, and regulating CHOP related apoptosis regulator (the Bcl2 family) to reverse pacilitaxel induced apoptosis. Moreover, we showed that the therapeutic effect of ursolic acid on the pacilitaxel-induced peripheral neuropathy is PPARγ dependent. CONCLUSIONS: Taken together, the present study suggests ursolic acid has potential as a new PPARγ agonist targeting ER stress-related apoptotic pathways to ameliorate pacilitaxel-induced peripheral neuropathic pain and nerve injury, providing new clinical therapeutic method for CIPN.


Assuntos
Neuralgia , Paclitaxel , Humanos , PPAR gama , 60576 , Qualidade de Vida , Neuralgia/induzido quimicamente
2.
Magn Reson Med ; 91(6): 2374-2390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225861

RESUMO

PURPOSE: To evaluate the performance of various MR electrical properties tomography (MR-EPT) methods at 3 T in terms of absolute quantification and spatial resolution limit for electrical conductivity. METHODS: Absolute quantification as well as spatial resolution performance were evaluated on homogeneous phantoms and a phantom with holes of different sizes, respectively. Ground-truth conductivities were measured with an open-ended coaxial probe connected to a vector network analyzer (VNA). Four widely used MR-EPT reconstruction methods were investigated: phase-based Helmholtz (PB), phase-based convection-reaction (PB-cr), image-based (IB), and generalized-image-based (GIB). These methods were compared using the same complex images from a 1 mm-isotropic UTE sequence. Alternative transceive phase acquisition sequences were also compared in PB and PB-cr. RESULTS: In large homogeneous phantoms, all methods showed a strong correlation with ground truth conductivities (r > 0.99); however, GIB was the best in terms of accuracy, spatial uniformity, and robustness to boundary artifacts. In the resolution phantom, the normalized root-mean-squared error of all methods grew rapidly (>0.40) when the hole size was below 10 mm, with simplified methods (PB and IB), or below 5 mm, with generalized methods (PB-cr and GIB). CONCLUSION: VNA measurements are essential to assess the accuracy of MR-EPT. In this study, all tested MR-EPT methods correlated strongly with the VNA measurements. The UTE sequence is recommended for MR-EPT, with the GIB method providing good accuracy for structures down to 5 mm. Structures below 5 mm may still be detected in the conductivity maps, but with significantly lower accuracy.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos , Condutividade Elétrica , Imagens de Fantasmas , Tomografia/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083553

RESUMO

Magnetic Resonance electrical property tomography (MR-EPT) is a non-invasive imaging modality that reconstructs the living biological tissue's conductivity σ and εr permittivity using spatial derivatives of the measured RF field, also termed B1 data, in a magnetic resonance imaging system. The spatial derivative operator, particularly the Laplacian, amplifies the noise in the reconstructed electrical property (EP) maps, hence decreasing accuracy and increasing boundary artifacts. We propose a novel adaptative convolution kernel for generating numerical derivatives based on 3D Savitzky-Golay (SG) filters and local segmentation in a magnitude image. In comparison to typical SG kernel, the proposed kernel allows arbitrary shapes and sizes to vary with local tissue. It provides an automatic trade-off between noise and resolution, thereby significantly enhancing reconstruction accuracy and eliminating boundary artifacts.


Assuntos
Imageamento por Ressonância Magnética , Tomografia , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Tomografia/métodos , Espectroscopia de Ressonância Magnética , Condutividade Elétrica
4.
J Leukoc Biol ; 113(2): 149-163, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822179

RESUMO

RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.


Assuntos
Neoplasias Hematológicas , Síndromes Mielodisplásicas , Humanos , Hematopoese , Mutação , Síndromes Mielodisplásicas/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética
5.
Biomaterials ; 257: 120264, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791387

RESUMO

Oxidative stress is a major cause of skin injury induced by damaging stimuli such as UV radiation. Currently, owing to their immunomodulatory properties, mesenchymal stem cell-derived exosomes (MSC-Exo), as a nanotherapeutic agent, have attracted considerable attention. Here, we investigated the therapeutic effects of MSC-Exo on oxidative injury in H2O2-stimulated epidermal keratinocytes and UV-irradiated wild type and nuclear factor-erythroid 2-related factor-2 (Nrf2) knocked down cell and animal models. Our findings showed that MSC-Exo treatment reduced reactive oxygen species generation, DNA damage, aberrant calcium signaling, and mitochondrial changes in H2O2-stimulated keratinocytes or UV-irradiated mice skin. Exosome therapy also improved antioxidant capacities shown by increased ferric ion reducing antioxidant power and glutathione peroxidase or superoxide dismutase activities in oxidative stress-induced cell and skin injury. In addition, it alleviated cellular and histological responses to inflammation and oxidation in cell or animal models. Furthermore, the NRF2 signaling pathway was involved in the antioxidation activity of MSC-Exo, while Nrf2 knockdown attenuated the antioxidant capacities of MSC-Exo in vitro and in vivo, suggesting that these effects are partially mediated by the NRF2 signaling pathway. These results indicate that MSC-Exo can repair oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Thus, MSC-Exo may be used as a potential dermatological nanotherapeutic agent for treating oxidative stress-induced skin diseases or disorders.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Antioxidantes/metabolismo , Exossomos/metabolismo , Peróxido de Hidrogênio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
6.
Cell Mol Neurobiol ; 36(8): 1257-1268, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26743530

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1-50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Polissacarídeos/farmacologia , Sirtuína 3/metabolismo , Envelhecimento , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...